skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cavanaugh, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Marine protected areas (MPAs) are an important tool for conserving coastal marine ecosystems, with well‐documented benefits for fished species. However, their potential to benefit non‐exploited species, such as primary producers in kelp forest ecosystems, is less well understood, particularly under escalating climate change impacts.In this study, we used four decades of remote sensing to examine the effects of 54 MPAs on kelp canopy coverage and assess how these effects influence kelp resilience to marine heatwaves. We developed a method for identifying paired reference (control) sites using historical satellite data and then used Before‐After Control‐Impact Paired Series analysis to examine whether the implementation of MPAs leads to increases in kelp coverage. In addition to examining changes in kelp coverage before and after MPA implementation, we also analysed the effect of MPAs on the resistance and recovery of kelp canopy coverage to a series of severe marine heatwaves in the North Pacific between 2014 and 2016.We found that the implementation of MPAs led to a modest positive effect with an 8.5% increase in kelp coverage compared to reference areas, though effects varied across MPAs.The positive effect of MPAs became more evident following the marine heatwaves, with kelp forests in MPAs showing greater recovery than in reference sites, particularly in southern California.Synthesis and applications. Our results provide empirical evidence of the potential role of MPAs as climate adaptation tools and highlight that well‐managed MPAs can support ecosystem stability under increasing climate stress. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Abstract Mangroves are important ecosystems for coastal biodiversity, resilience and carbon dynamics that are being threatened globally by human pressures and the impacts of climate change. Yet, at several geographic range limits in tropical–temperate transition zones, mangrove ecosystems are expanding poleward in response to changing macroclimatic drivers. Mangroves near range limits often grow to smaller statures and form dynamic, patchy distributions with other coastal habitats, which are difficult to map using moderate‐resolution (30‐m) satellite imagery. As a result, many of these mangrove areas are missing in global distribution maps. To better map small, scrub mangroves, we tested Landsat (30‐m) and Sentinel (10‐m) against very high resolution (VHR) Planet (3‐m) and WorldView (1.8‐m) imagery and assessed the accuracy of machine learning classification approaches in discerning current (2022) mangrove and saltmarsh from other coastal habitats in a rapidly changing ecotone along the east coast of Florida, USA. Our aim is to (1) quantify the mappable differences in landscape composition and complexity, class dominance and spatial properties of mangrove and saltmarsh patches due to image resolution; and (2) to resolve mapping uncertainties in the region. We found that the ability of Landsat to map mangrove distributions at the leading range edge was hampered by the size and extent of mangrove stands being too small for detection (50% accuracy). WorldView was the most successful in discerning mangroves from other wetland habitats (84% accuracy), closely followed by Planet (82%) and Sentinel (81%). With WorldView, we detected 800 ha of mangroves within the Florida range‐limit study area, 35% more mangroves than were detected with Planet, 114% more than Sentinel and 537% more than Landsat. Higher‐resolution imagery helped reveal additional variability in landscape metrics quantifying diversity, spatial configuration and connectedness among mangrove and saltmarsh habitats at the landscape, class and patch scales. Overall, VHR satellite imagery improved our ability to map mangroves at range limits and can help supplement moderate‐resolution global distributions and outdated regional maps. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Tropical peatlands play an important role in global carbon (C) cycling, but little is known about factors driving carbon dioxide (CO2) and methane (CH4) emissions from these ecosystems, especially production in deeper soils. This study aimed to identify source material and processes regulating C emissions originating deep in three sites in a peatland on the Caribbean coast of Panama. We hypothesized that (1) surface-derived organic matter transported down the soil profile is the primary C source for respiration products at depth and that (2) high lignin content results in hydrogenotrophic methanogenesis as the dominant CH4 production pathway throughout the profile. We used radiocarbon isotopic values to determine whether CO2 and CH4 at depth are produced from modern substrates or ancient deep peat, and we used stable C isotopes to identify the dominant CH4 production pathway. Peat organic chemistry was characterized using 13C solid-state nuclear magnetic resonance spectroscopy (13C-NMR). We found that deep peat respiration products had radiocarbon signatures that were more similar to surface dissolved organic C (DOC) than deep solid peat. These results indicate that surface-derived organic matter was the dominant source for gas production at depth in this peatland, likely because of vertical transport of DOC from the surface to depth. Lignin, which was the most abundant compound (55 %–70 % of C), increased with depth across these sites, whereas other C compounds like carbohydrates did not vary with depth. These results suggest that there is no preferential decomposition of carbohydrates but instead preferential retention of lignin. Stable isotope signatures of respiration products indicated that hydrogenotrophic rather than acetoclastic methanogenesis was the dominant production pathway of CH4 throughout the peat profile. These results show that deep C in tropical peatlands does not contribute greatly to surface fluxes of carbon dioxide, with compounds like lignin preferentially retained. This protection of deep C helps explain how peatland C is retained over thousands of years and points to the vulnerability of this C should anaerobic conditions in these wet ecosystems change. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Coastal dunes are globally recognized as natural features that can enhance coastal resilience and protection from wave events, storm surges, coastal flooding, and longer- term sea level rise. As a result, dune restoration is being increasingly used along urban and natural coasts as an adaptation option for climate change. However, information on the performance of restored dunes in response to extreme events is limited. On urban beaches where management includes grooming, dunes are often degraded or absent, leaving coastal communities more vulnerable to flooding and erosion during storms and wave events. Following an extreme wave surge event in December 2023, we compared the performance of a small (1.2 hectare) pilot dune restoration on an intensively groomed urban beach in southern California to an adjacent mechanically groomed control site. We used total water level (wave setup, tide, wave runup) as a proxy for flooding potential. The average wave runup incursion distance was extended 13.6 m farther inland on the groomed control site compared to the dune restoration site. This result demonstrates the potential for restored dunes to enhance flood protection and the potential for increasing coastal resilience using nature-based solutions on urban beaches. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. Abstract Biodiversity can stabilize ecological communities through biological insurance, but climate and other environmental changes may disrupt this process via simultaneous ecosystem destabilization and biodiversity loss. While changes to diversity–stability relationships (DSRs) and the underlying mechanisms have been extensively explored in terrestrial plant communities, this topic remains largely unexplored in benthic marine ecosystems that comprise diverse assemblages of producers and consumers. By analyzing two decades of kelp forest biodiversity survey data, we discovered changes in diversity, stability, and their relationships at multiple scales (biological organizational levels, spatial scales, and functional groups) that were linked with the most severe marine heatwave ever documented in the North Pacific Ocean. Moreover, changes in the strength of DSRs during/after the heatwave were more apparent among functional groups than both biological organizational levels (population vs. ecosystem levels) and spatial scales (local vs. broad scales). Specifically, the strength of DSRs decreased for fishes, increased for mobile invertebrates and understory algae, and were unchanged for sessile invertebrates during/after the heatwave. Our findings suggest that biodiversity plays a key role in stabilizing marine ecosystems, but the resilience of DSRs to adverse climate impacts primarily depends on the functional identities of ecological communities. 
    more » « less
  6. Spatial synchrony, the tendency for populations across space to show correlated fluctuations, is a fundamental feature of population dynamics, linked to central topics of ecology such as population cycling, extinction risk, and ecosystem stability. A common mechanism of spatial synchrony is the Moran effect, whereby spatially synchronized environmental signals drive population dynamics and hence induce population synchrony. After reviewing recent progress in understanding Moran effects, we here elaborate a general theory of how Moran effects of different environmental drivers acting on the same populations can interact, either synergistically or destructively, to produce either substantially more or markedly less population synchrony than would otherwise occur. We provide intuition for how this newly recognized mechanism works through theoretical case studies and application of our theory to California populations of giant kelp. We argue that Moran interactions should be common. Our theory and analysis explain an important new aspect of a fundamental feature of spatiotemporal population dynamics. 
    more » « less
  7. Cross-ecosystem subsidies are critical to ecosystem structure and function, especially in recipient ecosystems where they are the primary source of organic matter to the food web. Subsidies are indicative of processes connecting ecosystems and can couple ecological dynamics across system boundaries. However, the degree to which such flows can induce cross-ecosystem cascades of spatial synchrony, the tendency for system fluctuations to be correlated across locations, is not well understood. Synchrony has destabilizing effects on ecosystems, adding to the importance of understanding spatiotemporal patterns of synchrony transmission. In order to understand whether and how spatial synchrony cascades across the marine-terrestrial boundary via resource subsidies, we studied the relationship between giant kelp forests on rocky nearshore reefs and sandy beach ecosystems that receive resource subsidies in the form of kelp wrack (detritus). We found that synchrony cascades from rocky reefs to sandy beaches, with spatiotemporal patterns mediated by fluctuations in live kelp biomass, wave action, and beach width. Moreover, wrack deposition synchronized local abundances of shorebirds that move among beaches seeking to forage on wrack-associated invertebrates, demonstrating that synchrony due to subsidies propagates across trophic levels in the recipient ecosystem. Synchronizing resource subsidies likely play an underappreciated role in the spatiotemporal structure, functioning, and stability of ecosystems. 
    more » « less
  8. Pérez-Matus, Alejandro (Ed.)
    Giant kelp and bull kelp forests are increasingly at risk from marine heatwave events, herbivore outbreaks, and the loss or alterations in the behavior of key herbivore predators. The dynamic floating canopy of these kelps is well-suited to study via satellite imagery, which provides high temporal and spatial resolution data of floating kelp canopy across the western United States and Mexico. However, the size and complexity of the satellite image dataset has made ecological analysis difficult for scientists and managers. To increase accessibility of this rich dataset, we created Kelpwatch, a web-based visualization and analysis tool. This tool allows researchers and managers to quantify kelp forest change in response to disturbances, assess historical trends, and allow for effective and actionable kelp forest management. Here, we demonstrate how Kelpwatch can be used to analyze long-term trends in kelp canopy across regions, quantify spatial variability in the response to and recovery from the 2014 to 2016 marine heatwave events, and provide a local analysis of kelp canopy status around the Monterey Peninsula, California. We found that 18.6% of regional sites displayed a significant trend in kelp canopy area over the past 38 years and that there was a latitudinal response to heatwave events for each kelp species. The recovery from heatwave events was more variable across space, with some local areas like Bahía Tortugas in Baja California Sur showing high recovery while kelp canopies around the Monterey Peninsula continued a slow decline and patchy recovery compared to the rest of the Central California region. Kelpwatch provides near real time spatial data and analysis support and makes complex earth observation data actionable for scientists and managers, which can help identify areas for research, monitoring, and management efforts. 
    more » « less